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Abstract. Results are presented of a theoretical and experimental investigation of the dynamic 
conductivity in the microwave kgion of a two-dimensional lateral-surface superlattice. A 
theoretical analysis based on the Solution of the Boltrmann kinetic equation for ZD electrons 
in a laterally modulating potential, an extemal magnetic field and a microwave field shows 
that the components of the dynamic cunductivity tensor have an oscillatory character of various 
types. A prelimina!y experimental study of the dynamic conductivity in the microwave region is 
presented. Measurements of the reflection coefficient of the microwave radiation (f = 38GHz) 
from a GaAs/AIGaAs lateral superlattice have been carried out. For the fin1 time Weiss-type 
oscillations have been observed in a dynamic regime. 

1. Introduction 

There has recently been considerable attention focused on periodically structured two- 
dimensional systems, such as surface-lateral superlattices, arrays of quantum dots and 
quantum wires. and arrays of antidots, which have unique physical properties. While 
investigating static magnetoresistance of microstructured 2D systems various effects have 
been observed. A novel type of oscillation (the so-called Weiss oscillation) has 
been discovered and intensively studied both experimentally and theoretically [ 1-13]. 
Furthermore, in the DC regime, the oscillations caused by the Aharonov-Bohm effect 114,151 
or selective orbits of ballistic electrons [16,17], large negative magnetoresistances [IS, 191 
(in small magnetic fields) and positive magnetoresistances [ZO] (in high magnetic fields) 
have been found. 

In far-infrared and Raman spectra, collective excitations of the electron gas manifest 
themselves [Zl, 221.. Recent work [23-261 indicates that laterally-modulated electron systems 
may exhibit new dynamical properties of fundamental interest. Our paper is devoted to the 
theoretical and experimental investigation of the dynamic magnetoconductivity of a weakly 
modulated 2D electron gas in the microwave region. 

2. Theory 

The response of a system to an external electromagnetic field of cyclic frequency o = 271 f 
is described by the dynamic conductivity tensor uij(w). In this section, expressions for 
components of the tensor uij are derived. For this purpose we have generalized the approach 
developed in [I31 for the calculation of the static magnetoresistance of a structure with 
ID modulation to the case of a 2D superlattice in an extemal alternating electric field. 
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The expression for the dynamic conductivity is found on the basis of a solution of the 
Boltzmann kinetic equation for 2D electrons subject to a laterally modulating potential, an 
external constant magnetic field B and a microwave field. 

Assuming an external clectric field E @ )  = Re(E,e-”), where E, is the complex 
amplitude of the electromagnetic field, we start from the linearized kinetic equation: 

Lfl 
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(1) 
afo (L - iw)fI = -eE,uu(r, E)- 

Here fl is the non-equilibrium correction to the distribution function, which is linear in 
E,; the term U ( T ,  E )  = J 2 ( E  + eV(r ) ) /m ,  where V ( T )  is the lateral potential, which is a 
periodic function with period a, and a, along the corresponding axes; e > 0 is the absolute 
value of the electron charge, u=(cosrp, sinrp) (where (o is the polar angle of the electron 
velocity (momentum)), wc = eB/mc is the cyclotron frequency, r is the relaxation time 
(as in [13]. 5 is assumed to be constant), and fo = ( 1  + exp[(E - <)/TI]-’ is the Fermi 
function (where is the chemical potential). Equation (1) is written in variables T = ( x ,  y ) ,  
(o and E ,  where E = mu2/2 - eV(r )  is the total electron energy. 

The complex ampIitude of the current is expressed in terms of fj as 

j = - e N ( f l u u ( r ,  E ) )  (3) 

where N = m/nh2 is the density of states of an unmodulated 2D electron gas. Angular 
brackets denote the following operation: 

where C2 is the ‘volume’ of the lateral superlattice elementary cell, 
We introduce the function F(T, E )  as follows: 

where &(E)  = &(E)zj j (E)  is the unperturbed (i.e. in the absence of a lateral 
potential) dynamic diffusion tensor of a 2D system for electrons with an energy equal to E ,  
5 0 ( E )  = [ s u ~ ( E ) / Z ] ( l  +?’)-I, zXx = zyy = 1, & = -axy = ?, = oc?/(l -io?), and 
uo(E) = m. The first term in (5) gives the (Drude-type) dynamic conductivity of an 
unmodulated ZD electron gas: 

The second term leads to the correction due to V(T) :  
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From (1) one can obtain the equation for the function F. It has the form 

In the derivation of (8) the identity ukul+8uk/8p3u,/&p = &. has been used. After simple 
but cumbersome transformations the expression (7) for A&j can be presented in the form 

We shall~use the lateral potential in the simple form? 

V ( T )  =~h[~ ,  sin(q,(xj) + V, sin(q,(y)] (10) 
where qx,y = Za/ax,,. We assume the potential amplitudes VL., to be weak, which allows 
us to solve (S) perturbatively. To first order in VX,, the function F is determined by 

EoF = -eV7 V I E  
with & = 21 “=o. This equation can be solved by means of a Fourier series expansion over 
T .  Inserting the solution to (9) we find the following for the diagonal component of 6i, (note 
that we consider the case of a square superlattice: a, = a, = a. V, = V, = VO; furthermore, 
we assume the electron gas to be strongly degenerate, i.e. T = 0 and afo/a< + S(E -EF) ,  
where EF = <(T = 0) is the Fermi energy): 

(11) sxx(w, B )  = Ne’Do[ l+  (7’ - 1)Kl 

Here J k ( z )  are Bessel functions, y = wcr. = y / q 9  q = 1 - iwr, I = UFT is the free 
path length, UP 5 UO(EF)  is the Fermi velocity, E = eVo/EF is a dimensionless parameter 
that is characteristic of a modulating lateral potential, and 6, = b o ( E ~ ) .  At w = 0 
the complex values 60, k and S~are reduced to corresponding real ones introduced in 
[13]. Equation (13) can be transformed to a form that is more convenient for numerical 
calculations: 

For oyx one can write the analogous expression 

uyJ(w. B )  = Ne’JDo(1 - 2k). (15) 
It is easy to verify that, at o = 0 for pyu (where ,i = b-’(O, B )  is the static 
magnetoresistance tensor), one can derive from (11) and (15) the expression presented 
in [13]. 

Equations (11) and (15) were obtained in the limit of weak modulation, i.e. formally at 
e2 << 1. However, it is necessary to note that for the applicability of the found expressions, 
the condition lAu/uj << 1 ( A u  = U - uI<=o) should be fulfilled, which is equivalent to 
I(7’ - l)kl, Ikl << 1. An analysis and numerical calculations show that these conditions 
can appear to be more rigid  than E << 1. 

t In many theoretical works (see, for example, [6,7,9]) a sinusoidal modulation potential has been used for the 
description of magnetotransport of lateral superlattices. 
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3. Numerical calculations 

Using (11)-(14) we have carried out numerical calculations of the magnetic field 
dependencies of the value Re(Ao;,(o, B ) )  = Re@,, -U::)), which is the correction to the 
real part of the conductivity due to the modulating potential (where U;:) is the conductivity 
of an unmodulated 2D electron gas), at different frequencies of an external electromagnetic 
field. In figure 1 we show some results of such calculations at magnetic fields up to 0.2T. 
The range of magnetic fields (0 - 0.2 T) was chosen in an optimal way to demonstrate the 
novel and peculiar features of the dynamic conductivity in surface-lateral superlattices. The 
following parameters were used: 

ns = 4 x 10" cm? 
VO = 0.5mV 

~ 

p = 2.5 x 1 6  cm*V-' s-' a =280nm 
E = 0.035. 

From figure 1 it is seen that the value R e ( A Q  oscillates with the magnetic field; moreover, 
the oscillations have essentially different characters in different frequency regions. The ratio 
of the amplitude of oscillations to the total conductivity increases quadratically with 4 and 
at Vo = 0.5mV approaches about 0.56, lo%, 5%, 0.2% for curves (a), (b), (c) and (d), 
respectively. 

Y 11 10 9 N,=8 
I l l  I 

0.00 0.05 0.10 0.15 0.20 

Magnetic Field (Tesla) 

Figure 1. Correction to the real 
part of the dynamic conductiv- 
ity of a lateral superlanice against 
magnetic field at different fre- 
quencies of an external elecfro- 
magnetic field. 
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Curve (a) calculated at f = 0 points to the fact that modulating the potential of the 
lateral superlattice leads to oscillatory behavior of static magnetoconductivity (and naturally 
magnetoresistivity). These oscillations, referred to as Weiss oscillations [I-31, occur under 
commensurability with the cyclotron diameter 2R, = 2 u ~ j o ~  and superlattice period a. 
They have been studied experiment ally^ and theoretically in a number of works [1-13]. 
Marks over curve (a) in figure 1 indicate the positions of minima of Weiss oscillations 
in magnetoconductivity. Corresponding values of the magnetic field are defined by the 
condition 

2RJa = NW - 114 NW = 1.2, .. .. (16) 

Under a higher frequency (f = 60 GHz; curve (b) in figure 1) there occur distinct beats: 
Weiss oscillations are modulated by an envelope function that is periodic in 1/B. Extremal 
positions of the envelope function (loops), marked by ticks under the curve 2 in figure 1, 
correspond to the condition 

w = NCO, Nc = 1,2, .. .. (17) 

Therefore, the envelope function that modulates the amplitudes of Weiss oscillations is 
connected with a cyclotron resonance (CR) and its harmonics. CR harmonics are due to 
the lateral potential of the superlattice; under a classical description in an unstructured 2D 
system they are absent. Qualitatively, the appearance of CR harmonics can be explained .by 
the fact that in the presence of a lateral potential the electron motion ceases to be harmonic 
with the only frequency wc. Note that in the region of CR harmonics with even orders 
of Nc. condition (16) corresponds to the positions of the minima of quick (i.e. Weiss) 
oscillations in Re(A&;,), while for odd Nc, except in the vicinity of CR (Nc = I), it defines 
maximal positions of this function. Thus,  at transitions through nodes, phase jumps of 
Weiss oscillations close to JZ take place. 

A further increase in frequency causes other oscillations to appear, periodic in 1/B, 
which are associated with neither (17) nor (16). Curve (c) in figure 1, calculated at 
f = 600GHz, shows such oscillations, which modulate more frequent oscillations: CR 
harmonics. Numerical calculations and theoretical analyses based on asymptotic properties 
of Bessel functions have demonstrated that the minima of the envelope function (curve (c) 
in figure 1) obey the following relation: 

2 R C @ ( f l f d a  = f iw  - 114 (18) 

where fiW = 1,2.. . ., fer = uF/u. @ ( x )  = 0 - x tan-'(J-). Equation (18) 
can be derived as follows. For e = ot >> 1 and o > h, from (1 1) we can obtain that 

At o close to no, the term k = n gives the main contribution, i.e. Re(AZrx) a J:(nfcr/f). 
Using asymptotic expressions for Bessel functions [27] one can find that at n >> 1 and 
f < f cr  

(20) 
1 

nw 
Re(ACx;,) a - cos*[(w - tan-' w)n - x/4] 
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h 

v X 
8 0.4 fsJ 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 

X Figure 2. The frequency factor in (18). 

where w = d m .  It is seen from (20) that Re(AEJx) is a periodic function of n,' 
with a period equal to x / ( w  -tan-' w). Furthermore, it is not difficult to obtain (18). 

The function @ ( x )  is depicted in figure 2. The new oscillations gradually transform to 
static commensurability oscillations at zero frequency, when @ is equal to 1, i.e. in this 
case condition (18) coincides with (16). Therefore the revealed oscillations can be referred 
to as dynamic commensurability or dynamic Weiss oscillations. Marks over curve (c) in 
figure 1 are set in accordance with (18). 

These oscillations disappear when the frequency f of an external field is higher than 
fCr (in the case of our chosen parameters fCr x 950GHz) and only CR harmonics are left 
with an exponential envelope function (see curve (d) in figure 1). This behaviour agrees 
with asymptotic expressions of Bessel functions at n >> 1 and f > fa [27]. In this case, 
instead of (ZO), one should really wnfe 

exp[-2n(tanh-l W -IT)] 1 
Re(b&,,) a 1 - - ( ") n(tanh-l W - W )  

where W = ,/W. The disappearance of oscillations at high enough frequencies 
can be understood crudely as follows. At f =. fee, during the period of the external 
electromagnetic field l/f,  the electron propagates a distance less than the superlattice 
period a, i.e. it doesn't 'feel' the periodicity of the modulating potential. Therefore, 
the commensurability oscillations disappear. CR harmonics remain because they are due to 
the perturbation potential (not necessarily periodical). 

4. Experimental details 

We attempted to study dynamic properties of a surface-lateral superlaktice using microwave 
radiation. 

The sample was fabricated from a selectively doped heterostructure GaAslAlGaAs with a 
high-mobility two-dimensional electron gas having the following initial parameters at 4.2 K 
~ = 2 x  105cm2V-'s-l a nd n, = 4.0 x 10" On the surface of the heterostructure a 
mask, periodic along two directions, was covered by means of hologaphic photolithography 
with double exposition [IS]. To create a potential relief, a wet etching of the structure to a 
depth of about 2008, was performed. As a result, an initially homogeneous ZD electron gas 
was brought into the periodic superlattice potential with equal periods along both directions: 
a = 280nm (the value a was tested with the help of a tunnelling microscope). 

Measurements were carried out on the microwave setup shown schematically in figure 3. 
The microwave radiation (HIo  wave, f = 38GHz) from the source on the basis of a Gunn 
diode (1) propagated along a rectangular waveguide of cross section 3.4 x 7.2 mm2, passed 
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Figure 3. Experimental setup. 

through isolator (2), attenuator (3) and microwave circulator (4), and then reached the T- 
shaped wave bridge (5). where the HIo wave was transformed into a HII wave in a thin 
stainless-steel cylindrical waveguide of diameter 6 mm. The specimen (6) was mounted on 
the open end of the cylindrical waveguide in a helium cryostat (7) between poles of an 
electromagnet (8). The active layer of the sample was placed facing the waveguide, and 
behind the sample the metallic plate was attached. The reflected radiation propagated back 
along the waveguide, and was directed onto the microwave detector (9) by the circulator. 
After detection, the signal was amplified (10) and recorded by means of the two-coordinate 
XY recorder (11). To increase the sensitivity. we used the technique of weak modulation 
of the magnetic field with synchronous signal detection at the basic frequency [28]. Thus, 
the measured signal is proportional to the derivative of the reflectance with respect to the 
magnetic field dRjdB. 

- 
3 

m 
B 

m 
v 

% 

I 

Magnetic Field (Tesla) 
,~ Fipre 4. Magnetic field dependencies of the reflection coefficient 

from a GaAs/AlGaAs lateral superlattice. Curve (a): experiment; 
curves (b) and (c): theory. 

Curve (a) in figure 4 shows the experimental magnetic field dependence of the derivative 
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of the reflection coefficient dRfdB for the surface superlattice structure described above. 
It is seen that oscillations occur on the background of the monotonic dependence of the 
reflection coefficient. 

The observed oscillations cannot be explained by collective excitations: edge 
magnetoplasmons or 20 magnetoplasmons. Edge magnetoplasmons cannot be excited 
because the sample completely covers the waveguide cross section. For a sample with 
a perimeter about 1 cm they can manifest themselves at magnetic fields much lower than 
1 kG [29]. As for 20 magnetoplasmons, their characteristic frequency at a wavevector 
q = 2 ~ / a  % 2 x lo5 cm-' lies in the submillimeter region (a wavelength of about 150mm) 
not in the microwave range [XI. Therefore, to explain the obtained experimental data, we 
used the single-particle approach based on the theoretical analysis described above. 

Since in the experiment the reflectance was measured, we derived the expression 
for the microwave reflection coefficient taking into account the waveguide geometry. 
Maxwell's equations were solved in the simplest onedimensional geometry (the direction of 
propagation of the wave is normal to the plane of a sample) with corresponding boundary 
conditions. It is assumed that a metallic plate placed behind the sample reflected the 
microwave radiation completely. In the case of a two-dimensional lateral superlattice with 
the same periods along both directions in the plane of the electron system, the reflection 
coefficient (assuming that the axis x is chosen along the polarization vector of an incidence 
wave) takes the form 

L I Magarill et al 

where 5ij = 4nA,C~j/cA, A = 1 + icot(kd)A,n/A, k = 2 ~ n / A  (where A and A, are the 
wavelengths in the vacuum and the waveguide, respectively), and n and d are the refractive 
index and the substrate thickness. As may be seen from (22), in the general case the relation 
between R and C i j ( o )  is rather cumbersome. If the condition [Cijl << IAl is fulfilled, (22) 
can be simplified. We then get the following expression: 

The required condition can be fulfilled at low carrier mobility or when cot(kd) is large 
enough, i.e. at a substrate thickness close to 1x12 (where 1 is an integer). In our case the 
required conditions were not fulfilled. Therefore, for comparison of experiment with theory, 
we employed the expression (22). 

The magnetic field dependence of the derivative of the reflection coefficient dR/dB 
obtained by numerical calculation using (11)-(13) with p = 6 x 104cm2V-' s-' , n s -  - 
3.8 x 101'cm-2, a = 280nm, VO = 2.0mV (6 = 0.15) and f = 38GHz is depicted in 
figure 4 (curve (b)). The parameters were chosen in an optimal way to correspond most 
closely to experimental data. 

From figure 4 (curve (b)) it is seen that the theory predicts a large number of oscillations, 
while experimentally many fewer oscillations were observed (curve (a)). The inclusion of 
a finite temperature into the theory does not lead to the observed amplitudes of oscillation. 
For the closest agreement of experimental data with theory, one has to assume the existence 
of inhomogeneity over the surface of the structure, which results in a spread of cyclotron 
diameters and a sequence in smearing the oscillations. In our numerical calculations an 

. 
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inhomogeneity was modelled as the inhomogeneity on carrier concentration, in the following 
manner: 

where EFO = n,o/N and ~ E F  = Sn, /N.  Curve (c) in figure 4 has been calculated using 
(I  I), (15) and (22), taking into account (24) at SnS/nrO = 0.18. 

A satisfactory qualitative description of the oscillation amplitudes is achieved by 
assuming an inhomogeneity of about 20%. Such a large inhomogeneity is not surprising 
for a sample of about 1 cm’. However, we could not obtain good quantitative fitting. 
Apparently, this may be connected with the large potential amplitude in the sample under 
investigation, such that the developed theory becomes inapplicable. 

5. Conclusion 

In conclusion, we have carried out a theoretical analysis of the dynamic conductivity 
of a lateral superlattice by solving the classical kinetic equation. It was shown that 
the dependence of the dynamic conductivity on the external microwave field frequency 
exhibits different types of oscillations, periodic in a reciprocal magnetic field: CR harmonics, 
static and dynamic Weiss-type oscillations. The oscillations can superpose, resulting in a 
complicated picture of oscillations with beats. Experimental dependencies of the derivative 
of the reflectance from GaAs/AIGaAs surfacelateral superlattice are obtained. The dynamic 
commensurability oscillations in the microwave region at a frequency f = 38GHz have 
been observed for the first time. 
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